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SUMMARY 
The method of characteristics for steady supersonic flow 

problems in three dimensions, due to Coburn & Dolph (1949), is 
extended so that flow with shocks and entropy changes may be 
treated. Equations of motion based on Coburn & Dolph’s 
characteristic coordinate system are derived and a scheme is 
described for solving these by finite differences. 

A linearized method of characteristics is developed for cal- 
culating perturbations of a given three-dimensional field of flow. 
This is a generalization of the method evolved by Ferri (1952) for 
perturbations of plane flow and conical flow. 

1. INTRODUCTION 
The method of characteristics for problems of steady supersonic flow in 

two independent variables has a sound and clear cut basis which appears to 
be lacking when additional independent variables are considered. In  two 
dimensions two distinct families of characteristic curves are defined uniquely 
and the independent variables can be transformed so that the problem 
expressed in terms of characteristic coordinates is equivalent to the original 
problem. The extension to fields involving three dependent variables 
presents no difficulty. Theorems of uniqueness and existence covering 
most types of two-dimensional flow have been established. 

Flow involving three independent variables has a more nebulous 
character. A one-parameter family of characteristic surfaces pass through 
any one point in space and these envelop a conoid through the point; the 
lines of contact of the surfaces and the conoid, the bicharacteristic curves, 
also form a one-parameter family. There is, therefore, at first sight, a 
certain arbitrariness in any numerical method based on characteristics 
enabling one to determine the flow off a given initial surface. 

Three distinct methods for three-variable problems have been proposed 
so far. Thornhill (1952) proposes two difference schemes, both starting 
from a triangle drawn on an initial surface. I n  the first a new point in the 
flow space is determined as the intersection of the three internal characteristic 
surfaces through the sides of the triangle. In  the second the common inter- 
section of the three internal bicharacteristics through the vertices is found. 

Sauer (1950) reduces the three-variable problem to a seriesof two-variable 
problems. Working in Cartesian space he selects a sequence of equally 
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spaced coordinate planes, x = constant, say. In  each plane in turn he uses 
the two-dimensional method of characteristics to calculate the network inter- 
sected by families of characteristic surfaces passing through curves 
Z (y  = constant) drawn in the initial surface. Each point in this network is 
connected with a corresponding point in the network in an adjacent plane by 
a difference equation in the x-direction. 

Coburn & Dolph (1949), in a paper of considerable importance, consider 
three-variable problems from a more formal standpoint. They draw 
attention to work by Titt (1939) on general non-linear hyperbolic equations in 
three independent variables. Titt introduces a characteristic coordinate 
system in terms of which the original initial value problem can be reduced to a 
two-dimensional problem and so establishes uniqueness and existence 
theorems for correctly posed three-variable problems. Coburn & Dolph 
suggest that any difference scheme for supersonic flow problems should be 
closely linked with Titt’s coordinate scheme. The present author is in 
agreement with this view. By adopting the Titt scheme, one is sure of 
satisfying the requirements to ensure uniqueness and existence. At present 
no other scheme of equivalent soundness is known. 

Coburn & Dolph have developed these ideas for the equations of steady 
supersonic, homentropic flow, and their characteristic coordinate system is 
defined as follows. A family of non-intersecting, space-like curves are 
drawn on the surface bearing the initial Cauchy data, and the characteristic 
coordinate system is based on the two families of characteristic surfaces 
passing through these initial curves and on the family of surfaces determined 
by the corresponding bicharacteristics. These three families of surfaces are 
taken as coordinate surfaces, and the equation of potential flow is replaced by 
two characteristic equations and symmetry conditions. The characteristic 
system of equations is in a form suitable for solution by a method of finite 
differences but Coburn & Dolph do not consider the details of this. 

Of the methods proposed for practical application Sauer’s is the closest 
to the formal approach of Coburn & Dolph, since he employs two families of 
characteristic surfaces and a third non-characteristic family. However, 
Sauer chooses the third family to be planes x = constant, and in so doing is 
unable to satisfy Coburn & Dolph‘s requirement that two coordinate 
directions shall be bicharacteristic. When this condition is satisfied the 
third family of coordinate surfaces is determined automatically. When 
Coburn & Dolph’s method is applied, in general, none of the coordinate 
curves in the characteristic system are known in advance and they have to be 
determined, step by step, together with the physical variables arising in the 
problem in question. 

In  the present paper Coburn & Dolph’s work is carried a stage further. 
Firstly, their method is generalized to take account of motion with entropy 
changes and vorticity (viscosity and heat conduction are neglected). Even 
the simplest three-variable problems involve shocks of variable curvature, so 
this step is essential. The basic characteristic coordinate system is set up 
exactly in the manner proposed by Coburn & Dolph. When the motion is 



Method of characteristics for supersonic rotationalflow in three dimensions 41 1 

referred to this system two of the transformed equations are generalizations 
of the second characteristic equations familiar in non-homentropic problems 
in two variables. A third equation relates derivatives of pressure and velo- 
city components. The fourth equation, the energy equation, directly 
connects total speed with variables of state. The entropy does not enter 
these equations explicitly, and appears only in the equation of state and the 
condition that entropy remains constant in the stream direction. 

A finite difference scheme is considered for the numerical solution of the 
equations in practical cases. The basis of the scheme is the construction of a 
sequence of linear characteristic networks in the surfaces determined by the 
bicharacteristics. The method of construction of any one network is similar 
to that adopted in non-homentropic flow in two dimensions. An extra 
difference equation connects any two adjacent networks. 

In  the general case, when derivatives with respect to all space variables 
occur non-linearly, the calculation of the coordinate system is completely 
interwoven with that of the dependent variables themselves, and the computa- 
tion required is indeed formidable. However, if we know the solution to a 
certain non-linear flow problem, the equations governing a field of flow 
which is a linear perturbation of this are linear, and can be expressed in terms 
of a characteristic coordinate system defined by the basic flow. Such 
perturbation problems are of wide practical interest and have been examined 
previously, chiefly by Ferri (1952), but also by Ferrari (1936) and Guderley 
(1947). 

Ferri has developed a Linearized Method of Characteristics to apply to a 
number of three-variable problems of this simplified type. He considers 
three-dimensional linear perturbations of known two-dimensional fields of 
flow. Among the applications he considers are axially symmetrical flow 
past bodies of revolution which differ slightly from conical shape, flow past 
bodies of revolution (not necessarily thin) at small angles of yaw, and fields 
of flow in which there is a slight departure from plane flow conditions. In 
all cases his perturbation equations are referred to the characteristic network 
of the basic flow. I n  the case of plane flow the third independent variable 
is taken to be the Cartesian coordinate normal to the flow plane. In the 
axially symmetrical case, the angle of rotation of a basic meridian plane is 
used. 

Essentially, in Ferri’s Linearized Method of Characteristics, the departure 
point is some appropriate two-dimensional method. Here we shall arrive 
at a Linearized Method of Characteristics from a different approach. We 
shall first establish the equation governing the perturbations of a basic 
three-dimensional flow referred to Coburn & Dolph‘s system of characteristic 
coordinates. We shall then consider how these equations simplify when the 
basic flow degenerates into a plane or axially symmetrical flow. In  this way 
it is easier to make sure that Coburn & Dolph’s system of equations is 
retained in the form accepted for fully three-dimensional flow. 

It is difficult to comparethe equations obtained here with Ferri’s equations, 
since not only are the two approaches different but, also, the dependent 
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variables are handled in a different manner. However, in the special cases 
treated the characteristic coordinate systems are the same and it should be 
possible to deduce one form of equations from the other. 

2. THE EQUATIONS OF ROTATIONAL MOTION IN A GENERALIZED COORDINATE 

Let the position of a point in a field of steady, supersonic rotational flow 
be defined by the coordinate vector xi with metric tensor gij, and let ui be the 
velocity vector at this point. Denote the pressure, density and entropy 
by p ,  p and S respectively. We shall neglect viscosity, heat conduction and 
radiation. 

Referred to this coordinate system the Eulerian equations of motion are 

SYSTEM 

(2.1) 
1 
P 

uju. .+ - p  . = 0, 

together with the equation of continuity, 
U k  

P 
g j k U j , &  + - p,k = 0. 

In steady flow there is no variation in entropy in the stream direction, so 
that 

.is,, = 0. (2.3) 
The equation of state may be written 

From 12.4), 
P = P(P ,  S). 

We write c2 = @). 
Then, from (2.3) and (2.5), we obtain the relation 

Using this, (2.2) may be written 
uip,, = cwp,,. 

I I n  supersonic flow real characteristic surfaces are associated with (2. l), 
(2.Q (2.3) and (2.4). Through each point xi  pass a single-parameter family 
of surfaces which are characteristic for the velocity vector, the pressure and 
the density. In addition, each surface through xi which contains the stream 
direction is characteristic for the entropy. 

Then the surface Z, Consider first (2.1) and (2.8). 

z(xi) = constant, 
is characteristic if, when we specify on C values of ui, p and p, equations (2.1) 
and (2.8) admit solutions with arbitrary values of derivatives of these 
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quantities leading out of the surface. An elementary calculation shows that 
if hi is the unit vector normal to 2 at xi, then the surface is characteristic if 

This means that there are m1 characteristic surfaces through 2, which are 
tangential to a cone, the characteristic cone, with axis along the velocity 
direction. The component of velocity normal to a characteristic surface is 
equal to the local speed of sound. We shall be interested only in the nappe 
of the cone downstream of xi, on which 

(u'X,)2 = 8. (2.9) 

UiXi = +c .  (2.10) 
We observe that these characteristic surfaces are defined exactly as in 

hornentropic flow, so we may make use of the properties of such surfaces 
deduced by Coburn & Dolph. 

Now consider (2.3) and write 
L Y j  =X,s+pj t+v$U,  

where Xj is a unit vector normal to the surface and pj, v, are unit vectors lying 
in the surface 

.(xi) = constant. 
Then we find 

and we are therefore unable to determine s uniquely if 

It follows that surfaces containing the velocity vector are characteristic for 
the entropy. 

d X j  s + u$Lj t + ujv, u = 0, 

.GIj = 0. 

3. EQUATIONS OF MOTION IN CHARACTERISTIC FORM 

T o  obtain the characteristic equations corresponding to (2.1) and (2.8) we 
may employ the same coordinate system as that defined by Coburn & Dolph 
for homentropic flow. 

In Coburn & Dolph (1949), initial data (in the general case, values of 
d, p ,  p ,  S compatible with the equation of state) are given on some non- 
characteristic initial surface. On this surface an ml-family of curves are 
drawn which are space-like with respect to the local Mach cone. Through 
each curve of this family pass two surfaces which are characteristic in 
relation to (2.1) and (2.8). In  this way two families of characteristic surfaces 
are defined in the region of flow and these will intersect in an co2-family of 
curves, which will contain the original a9-family on the initial surface. 

At each point on a curve of this ma-family two bicharacteristic directions 
are defined. These are the directions of the lines of contact between the 
two characteristic surfaces and the characteristic conoid at the point. Thus 
at each point in the flow region three directions are defined. On these 
Coburn & Dolph base their characteristic coordinate system. 

Let Zi be the unit vector along a line of the co2-family. Let Xi, Xi be unit 
vectors at this point directed along normals to the two characteristic surfaces 
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through the point, and let ti, t” be the corresponding bicharacteristic 
directions at this point. The required coordinate system is to be based on 
the triad I i ,  ti, t’j. 

Following Coburn & Dolph we now iransform (2.1) and (2.8) so that they 
are referred to the coordinate triad li, ti, t’i. In particular, we require that 
only derivatives in the new coordinate directions shall appear in the equations 
of motion. 

We express ui,, as the sum of components along hi, ti, li. Then 
u~,, = A, U, + t j  bi + Zj C, 

and 
Equation (2.1) becomes 

u’u~,, = .’Aj U, + ujtj bi + ~ $ 1 ’  c ~ .  

(3.1) 
1 
P 

1 
PC 

uihj U, + uit, bi + ~ ’ 1 ~  ci + -p,, = 0. 
Equation (2.8) becomes 

gik(hka5+tkbj+lkcj)+ -ukp,k = 0, 

or 1 
hia, + tib, + ljc, + - ukp,k = 0. 

PC2 

Take the scalar product of hi with (3.1). Then 

(3.3) 
1 
P 

(u’hj)hiai + u’b, /libi + dZ, X‘C~ + - A$,, = 0. 

Multiply (3.2) by c and subtract from (3.3). Then, using the property 
Ah, = + c (hi is the outward normal on the downstream Mach cone), we find 

(3.4) 

(3.5) 

( 3 4  

1 
PC 

(u’t,X’-ct’)b,+(~’l~h”~Z‘)~,+ - (cXi-ui)$,j = 0. 

If q is the total speed we may write (see Coburn & Dolph, equation (2.6)) 

and (3.4) reduces to 
ui = chi + d ( q 2  - C2)tf 

(U’tj hi- ct’)bi + (u’Z~ hi- d’ )~ ,  - %4q2 - c2) tip,, = 0. 
PC 

We now evaluate bi and ci. We find 
bi + tjl, C, = tju,,,, 

Pt, bi + ci = PU*,’, 
so if lit, = cos* = a, (3.7) 

bi( 1 - COS~$) = tju,, - uZ’U,,~, 
ci( 1 - cos2t,h) = Z’U~,, - at$ui,,, 

and (3.6) reduces to 

{.’(t, - aZ,) hi- c(t‘- d i ) >  tkUi,& + 1 
1 -a2 

+ - 1 {uf(Z, - at,)&- c(ZC-- at’)) - d(q2-cZ)t”P,k = 0. (3.8) 
1 --a2 PC 
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Similarly, starting from the resolution 

we can derive the equation 
= hi a: + ti b: + lj c,l, 

- {ui(t; - aZ,)h’i- c(t”- ali)] t’kui,k + 1 
1 -a2 

2- 2 
) tfkp,& = 0. 1 + - { ~ ~ ( l , - a t ~ ) A ’ ~ - c ( l i - a a t ‘ i ) } Z ~ ~ ~ , ~ -  

1 -a2 PC 
(3.9) 

Equations (3.8) and (3.9) are the two ‘ second characteristic conditions’. 
They are generalizations of Coburn & Dolph’s equations and express the 
conditions that derivatives of ui or p (or p )  leading out of the characteristic 
surface exist, even though they are not determined uniquely. Equation (3.8) 
contains only derivatives along ti and li, and equation (3.9) contains only 
derivatives along t f i  and V. 

We require three further equations to determine uf p ,  p, S in the 
characteristic coordinate system. The first is a further relation between 
derivatives in the ti, t’i and lidirections. 

Equation (2.18) of Coburn & Dolph (1949) applies here and is 

(3.10) C2 ac2 
ui = (ti+ t‘i) - I( 

(1 - d )  V(p2 - 4 (1 - a2) 2/(p2 - c2) 

where d = COS+ = tit;. (3.11) 
Substitute the expression (3.10) for u3 in (2.1), but leave ui,, unchanged, 
and take the scalar product of Zi with the resulting equation. In  this way we 
find 

- tZPUiS3+ - LJP,, = 0. 
(1 - a2) d(p2 - 3) P 

In most practical applications the flow originates from a region of constant 
total energy and the relation 

p2 + J* = constant (3.13) 

The constant on the right has the same value 

Equation (3.13) provides the second relation required. The third rela- 

Suppose that vi is the unit vector normal to the surface determined by 1’ 
Let mi be the direction intersected by this surface 

S,, = v,A + m, B + 1, C. 
B + mil, C = mfS,i, 

Fm, 3 + C = PS,, 

P 
is true throughout the fluid. 
throughout the flow field irrespective of the presence of shock waves. 

tion involves the entropy. 

and the velocity vector u! 
on the surface determined by the bicharacteristics ti  and tti. Write 

Then 
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and if 

c =  - ( l i ~ , ,  - emis,,). 
1-e2  

Hence, from (2.3), 

or 
u3mj B -+ ujl, C = 0, 

(ujm, - eujlj)miS,i + (ujlj - eujmj)liS3i = 0. (3.14) 

TheJinite dayerence scheme 
The equations of motion referred to characteristic coordinates, (3.8), 

(3.9), (3.12), (3.13) and (3.14), are in the form most suitable for solution by 
numerical methods and we now put forward a finite difference scheme. The 
basis of this is the construction of a sequence of linear characteristic networks 
in the surfaces determined by the bicharacteristics. Three difference 
equations are employed in each surface and an additional difference equation 
connects the point to be determined with the corresponding point in the 
adjacent surface, where conditions are already known. 

I 

Figure 1 .  The cell of the characteristic network. 

The cell in the network is shown in figure 1. We start from the quad- 
The segments 23 and 14 lie 

The segments 12 and 43 lie on surfaces 

It is assumed that the characteristic network in the surface through 12 is 

Segments 75 and 86 are the intersections of the surface through If and ui 

rangle 1234 on a space-like initial surface. 
on initial lines (li) on the surface. 
determined by bicharacteristics on the initial surface. 

known. 

on the elements 346,215. 

(The first surface found may be in a plane of symmetry.) 
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The values of tkui,k 
are taken to be those at point 4, and tkui,k, tkp,k are replaced by difference 
ratios 

Equation (3.8) is applied along the segment 46. 

Aui AP 
distance 46 ’ distance 46 ’ 

Equation (3.9) is used in a similar manner to set up a difference equation 
along the segment 36. Equation (3.14) is used to determine the change 
in S along 86, that is, to find S at 6. Equation (3.12) is used to set up a 
difference equation along 56; the values of litju,,j and lit’hi,j are taken to 
be those at point 5. Equation (3.13) completes the system, which can then 
be solved by an iterative procedure. When 6 has been found the point 6‘ 
is next determined, and so on. 

The process must begin in a surface where conditions are known, such 
as a plane of symmetry. 

In general, it appears that the characteristic coordinate system is 
completely non-orthogonal. Coburn & Dolph made the conjecture 
that the diredtion li  is normal to t i  and t f i  throughout the flow space provided 
that this is the case on the original initial surface. They did not prove 
the conjecture and in spite of a thorough investigation the present author 
can find no evidence of its validity. However, the obliqueness of the 
coordinate system does not add seriously to the formidable amount of 
numerical work inherent in non-linear problems in three dimensions. 

4. LINEAR PERTURBATIONS OF STEADY SUPERSONIC FLOW PROBLEMS 

At the present stage, when so little is known about three-dimensional 
flow problems, the need for calculating completely non-linear fields of 
flow is limited. T o  begin with, an approximate technique is required 
which, by introducing some simplification in the general method, leads 
fairly quickly to an assessment of three-dimensional effects. This is the 
motive behind the Linearized Method of Characteristics developed by 
Ferri and, in more limited forms, by Ferrari and Guderley. 

We now introduce a Linearized Method of Characteristics from a new 
and more general point of view, starting from the characteristic equations 
set out in 5 3. Ferri considers the linear, three-dimensional perturbation 
of certain basic non-linear flows involving two independent variables, such 
as plane or axially symmetrical flow past non-slender bodies. Here we shall 
first examine linear perturbations of a general three-dimensional flow and 
then treat perturbations of flow in two variables as special cases. By this 
means it is much easier to ensure that the process of linearization does not 
distort the characteristic coordinate scheme described in 5 3. 

We start with a field of flow in which, at every point xi, the velocity 
vector Ui, pressure P, density R, and entropy S are assumed to be given. 
We then consider a field of flow which is a linear perturbation of this given 
basic field with velocity vector Ui+ui, pressure P + p ,  density R+p, entropy 
S + s. We assume that the dependent variables in the additional flow field, 
that is, the flow field remaining when the given field is subtracted from the 

F.M. 2 E  
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perturbed flow field, are small quantities of the first order, whose squares 
and products can be neglected. We refer both the perturbed and the basic 
fields of flow to the same system of coordinates xi, with metric tensor gij. 

The equations governing the perturbed field are . 
1 

R+P 
(Uj + uj)( ui + U J j  + - ( P  +p),, = 0, 

(Uj + d ) ( S  + s),j = 0, (4.3) 
P+p = f (R+p ,  S+s). (4.4) 

In the basic field the same equations are satisfied with all terms in ui, p ,  p, 
s omitted. If we subtract these equations from the corresponding equations 
(4.1) to (4.4) and retain only terms of the first order in ui, p ,  p and s we obtain 
the following equations to determine the additional flow field, 

(4.5) UjUi,3 + - p i + " j q . , j -  1 - P P,i = 0, R .  R2 

ap ap 
aR as- p = p -  + s -  

The coefficients of the derivatives of ui, p ,  and s in (4.5), (4.6) and (4.7) are 
the same as the corresponding coefficients in the equations of the basic 
flow. I t  follows that the characteristic properties of the additional flow 
are identical with those of the basic flow, so that the characteristic equations 
of the additional flow can be referred to the coordinate system defined in 
$3. When this is done (44, (4.6) are replaced by the system 

1 
(1 -a2) 

-i- ___ {( Ujlj Xi- CZi) - a( Ujtj Xi- Ct'))Zfu,, - 

P 
R2 

- -xiP,i+Ujh".,j = 0, (4.9) 

-- h'iPi+ujX'iq.,i = 0, (4.10) 
R2 
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m.4i,i + aC2 
(1 -az))2/(Q2- Cz) (tiui,i + t'iu. .) - liC2 

(1 - d )  d(Q2 - CZ) 

(4.12) 

Equations (4.9) and (4.10) are the ' second characteristic conditions '. 
Equation (4.11) corresponds to equation (3.12) for the basic flow, and (4.12) 
is derived from the energy equation. These are to be solved in conjunction 
with (4.7) and (4.8). 

Simpli$cation when basic jlow involves two independent variables 
The equations simplify for basic fields which involve only two inde- 

pendent variables, for example, plane flow, flow with axial symmetry and 
conical flow. In  all such fields the basic flow is identical in each of a one- 
parameter family of surfaces and it is possible to choose the vectors li to be 
normal everywhere to the surfaces of flow. With this choice li is normal 
to Ui, ti,  t'j, hi and Equations (4.9), (4.10) and (4.11) then 
simplify to 

and a = 0. 

1 
RC 

( Uitj  hi- Cti)tiui,i - CPl'ui,i - - . / (Q2 - C2)fip,i - 

- RC 3 u k P , * - ( $  + ;)Uk9.>- $h 'q ,+~jX~U, ,~  = 0, (4.13) 

- & { u ~ P , ~ - ( $  + %)UkP,k>- & A f i P , , + u Q ' ~ ~ , ,  = 0, (4.14) 

We now develop these equations further in the two special cases of 
basic plane flow and basic axially symmetrical flow. 

Linear perturbations of plane $ow 

plane with corresponding coordinate x. 
then cylindrical surfaces and can be written 

In the plane flow case we take li in the direction normal to the flow 
The characteristic surfaces are 

CI = constant, = constant, 
with generators parallel to the z-direction. 
along the coordinate curves in the u- and p-directions respectively. 

Let ha, h, be length parameters 
Then 

2 E 2  
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if p is the Mach angle of the basic flow, the original coordinate vector xi is 
Cartesian, with x1 and x2 in the basic flow plane and x3 normal to the Aow 
plane. We then find that 

ds2 = dxq + dxg + dxg 
= h: doc2 + hg dP2 + 2h, h, cos 2p dudp + dx2. (4.16) 

The coefficients in (4.16) are related to corresponding coefficients 
defined in $ 3  of Coburn & Dolph’s paper by 

A = h,, B = h,, C = 1, E = h,h ,~0~2p.  
Since xi is Cartesian, the directional derivatives of ui become, simply, 

If 8 is the angle between the basic velocity direction and the x-axis, the 
unit vectors associated with the coordinate system and the velocity vector 
are defined as follows: 

t i  = (cos(8 - p), sin(8 - p), 0}, 
t’i = (cos(8 + p), sin(8 + p), 0}, 

hi = {-sin(O-p>, +cos(O-p), 0}, 
A’‘ = { + sin(8+ p), - cos(8 +p), 0}, 
Ui = {Q cos 8, Q sin 8, O}. 

li = {O,O, 11, 

Making use of these relations, (4.13), (4.14) and (4.15) are transformed, 
after some reduction, to the equations 

au au cotp ap a% 
h, aa h,ap R h,ap aZ 

ha au h,aa R h,au ax 

-QsinB - - % Q c o s 8 2  - ___ - - C- +K+ L = 0, (4.17) 

Qsin8-- -1- -QcosOd au au - cotp - - ap - C - + K + M  au3 = 0, (4.18) 

where 
ap 

h, aP {u1sin(8+p)-u2cos(8+p))--- + cosec 2p 
R C  

K =  -- 

+ { -ulsin(B-p)+u2~0~(O-p))- + h, au 
+ RQ sin2p C cos ,U (m + h,aa ”), (4.19) 

P ap 
~2 h,ap L = - cot p - + cosec 2p{u1 sin(8 + p) - u2 cos(8 + p)} x 

+ cosec 2p{ - u1 sin(O - p) - - sin(8 - p) - + cos(8 - p) __ au1 
haaP 

- sin(8 - p)  h, - au1 au + cos(e - p) h, - au,>, au (4.20) 
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P ap 
h, au M = R2 cot p - + cosec 2pFL(u1 sin(6 + p)  - u2 cos(6 + p)}  x 

sin(6+p)- au1 -cos(O+p)- + cosec 2p{ - u1 sin(6 - p) + 
hr7 aP 

and (4.22) 

The system is completed by the perturbed forms of the energy equations, 
the equation of state and the condition of conservation of entropy in the 
stream direction. These give 

u1U1+u2U2- j.!! + I x  -dP = 0,  

ap ap 
aR as, p = p- +s- 

(4.23) 

(4.24) 

u ~ S , ~  + Qmjs,? = 0, (4.25) 
where mj is a unit vector in the basic stream direction. 

Linear perturbations of $ow with axial symmetry 
When the basic flow has axial symmetry it is convenient to refer the basic 

field to cylindrical polars xi with the xl-axis along the axis of symmetry. 
T o  calculate the perturbed field we use characteristic surfaces 

obtained by rotating the characteristic curves in the basic flow plane about 
the axis of symmetry. Corresponding length parameters h,, hp along these 
curves are introduced. The meridian planes are used as the third set of 
surfaces, so the third coordinate, 

is the angle between any meridian plane and a fixed meridian plane. 
terms of the usual notation for cylindrical polars, 

u = constant, /3 = constant, 

x3 = 4, 
In  

x1 = x, x2 = Y. 

Since the original coordinate space is not Cartesian the directional 

Let y i  be the coordinate vector in the characteristic space with metric 
derivatives are not as easy to calculate as in the case of basic plane flow. 

tensor Gij. Then 
y l  = p, y2 = a,  y3 = 33 = +, 

ds2 = g,, dx" dx" = G,, dy" dy", 
where 

O 1  1 0  
gvnn =[. 1 0 ,' 

0 0 (9))" 
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and a short calculation shows that 

The unit vectors in the characteristic coordinate triad are 
t f  = (cos(#-p), sin(#-p), 0}, 

t f i  = {cos(B+p), sin(0+p), 0}, 
li = (0, 0,  1/x2}. 

The covariant derivative of ui is 
ui,j 6 au -(;>urn> 

where In basic plane flow all components of 

{ y }  are zero but in the present case three components do not vanish. 

They are 

is the Christoffel symbol. 

As a result additional terms are introduced into the expression for the 
directional derivatives along Zi, t i ,  t f i .  

The equations governing the perturbed motion are finally found to 
be as follows: 

(4.28) 

together with (4.10), (4.24) and (4.25). 
are the expressions defined in (4.19), (4.20) and (4.21). 

In (4.26) and (4.27), K, L and &I 

Applications 
Ferri has considered a number of practical problems to which his linearized 

method of characteristics may be applied. In  the case of perturbed plane 
flow he takes a finite wing, in any cross-section of which the flow is sub- 
stantially two-dimensional. As an example of perturbed axially symmetrical 
flow he considers bodies of revolution at small angles of yaw and non- 
symmetrical conical bodies. Both classes of problems are important and 
merit futher attention. We shall describe briefly how they may be attacked 
by the present linearized characteristics method. 
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In both applications we must first apply the method of characteristics for 
two independent variables to calculate the basic flow. We then know the 
characteristic coordinate network for the additional flow and at each point 
of this we can tabulate the functions K and L and the coefficients of derivatives 
of additional flow variables. The additional flow can then be calculated 
by integrating the three-dimensional equations along the basic network. 
The resulting equations are all linear and the numerical process of solution 
is therefore comparatively simple, although the boundary condition may 
introduce difficulties. Conditions must be satisfied partly on a shock wave 
and partly on the body surface. It is necessary to construct the change in 
shape of shock due to third-dimensional effects as the calculation proceeds. 

Simplifications can be introduced into many problems concerning 
perturbations of plane flow. T o  the first approximation, plane supersonic 
flow past a curved aerofoil can be treated as that through a simple wave 
behind an attached curved shock with negligible entropy variation. A 
three-dimensional perturbation of this can be treated as a linear non- 
homentropic perturbation of a simple wave. This is governed by equations 
(4.17) to (4.25), where now all the derivatives of the basic variables along 
curves of one characteristic family vanish. 

A similar simplification arises when three-dimensional perturbations of 
two-dimensional wind tunnel flow are examined. Part of the basic flow is 
again a simple wave and it is not difficult to extend the technique of Meyer 
& Holt (195 1) to correct wind tunnels for three-dimensional departures 
from specified shape. 

This is the first report describing work carried out in the Dept. of 
Mathematics, Harvard University, under contract N5ori-07634, during the 
period 1 September 1955 to 31 January 1956. The author wishes to 
thank Garrett Birkhoff for making the visit possible, and for many 
stimulating discussions. 
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